post

IBM to increase the amount of renewable electricity it procures

IBM branded battery

After returning from IBM’s InterConnect conference recently we chided IBM for their radical opaqueness concerning their cloud emissions, and their lack of innovation concerning renewables.

However, some better news emerged in the last few days.

The Whitehouse last week hosted a roundtable of some of the largest Federal suppliers to discuss their GHG reduction targets, or if they didn’t have any, to create and disclose them.

Coming out of that roundtable, IBM announced its committment to procure electricity from renewable sources for 20% of its annual electricity consumption by 2020. To do this, IBM will contract over 800 gigawatt-hours (GWh) per year of renewable electricity.

And IBM further committed to:

Reduce CO2 emissions associated with IBM’s energy consumption 35% by year-end 2020 against base year 2005 adjusted for acquisitions and divestitures.

To put this in context, in the energy conservation section of IBM’s 2013 corporate report, IBM reports that it sourced 17% of its electricity from renewable sources in 2013.

It is now committing to increase that from the 2013 figure of 17% to 20% by 2020. Hmmm.

IBM committed to purchasing 800 GWh’s of renewable electricity per year by 2020. How does that compare to some of its peers?

In 2014, the EPA reported that Intel purchased 3,102 GWh’s, of renewable electricity, and Microsoft purchased 2,488 GWh’s which, in both cases amounted to 100% of their total US electricity use.

In light of this, 800 GWh’s amounting to 20% of total electricity use looks a little under-ambitious.

On the other hand, at least IBM are doing something.

Amazon, as noted earlier, have steadfastly refused to do any reporting of their energy consumption, and their emissions. This may well be, at least in part, because Amazon doesn’t sell enough to the government to appear on the US Federal government’s Greenhouse Gas Management Scorecard for significant suppliers.

With the news this week that 2015 will likely be the hottest year on record, and that the Antarctic ice sheets are melting at unprecedented rates, it is time for organisations that can make a significant difference, to do so.

Google, purchased 32% of their total US energy from renewables in 2014. But more than that, this week it emerged that Google are considering moving climate denying sites down the list of Google search results.

And Dell have introduced AirCarbon, packaging for its products which is externally certified carbon negative.

These are the kinds of measures that can make a difference.

Come on IBM. If this were your Spring Break report card, it’d read “IBM – could work harder”.

post

Apple launches ResearchKit – secure, private, open source medical research

ResearchKit

Apple announced a new initiative at its Spring Forward event yesterday – ResearchKit.

What is ResearchKit? Apple’s SVP of Operations, Jeff Williams, described it as a framework for medical researchers to create and deploy mobile apps which collect and share medical data from phone users (with their permission), and share it with the researchers.

Why is this important? Previously it has proven difficult for research organisations to secure volunteers for research studies, and the data collected from such studies is often collected, at best, quarterly.

With this program, Apple hopes to help researchers more easily attract volunteers, and collect their information far more frequently (up to once a second), yielding far richer data.

The platform itself launches next month, but already there are 5 apps available, targeting Parkinson’s, diabetes, heart disease, asthma, and breast cancer. These apps have been developed by medical research organisations, in conjunction with Apple.

The success of this approach can be seen already in this tweet:

I downloaded mPower, the app for Parkinson’s to try it out, but for now, they are only signing up people who are based in the US.

As well as capturing data for the researchers, mPower also presents valuable information to the user, tracking gait and tremor, and seeing if they improve over time, when combined with increased exercise. So the app is a win both for the research organisations, and for the users too.

Apple Does Not See Your Data

Apple went to great pains to stress that the user is in complete control over who gets to see the data. And Apple themselves doesn’t ever get to see your data.

This is obviously a direct shot at Google, and its advertising platform’s need to see your data. Expect to hear this mantra repeated more and more by Apple in future launches.

This focus on privacy, along with Apple’s aggressive stance on fixing security holes, and defaulting to encryption on its devices, is becoming a clear differentiator between Apple and Android (and let’s face it, in mobile, this is a two horse race, for now).

ResearchKit Open Source

Finally, Williams concluded the launch by saying Apple wants ResearchKit on as many devices as possible. Consequently, Apple are going to make ResearchKit open source. It remains to see which open source license they will opt for.

But, open sourcing ResearckKit is a very important step, as it lends transparency to the privacy and security which Apple say is built-in, as well as validating Apple’s claim that they don’t see your data.

And it also opens ResearchKit up to other mobile platforms to use (Android, Windows, Blackberry), vastly increasing the potential pool of participants for medical research.

We have documented here on GreenMonk numerous times how Big Data, and analysis tools are revolutionising health care.

Now we are seeing mobile getting in on the action too. And how.

post

IBM’s InterConnect 2015, the good and the not so good

IBM InterConnect 2015

IBM invited me to attend their Cloud and Mobile Conference InterConnect 2015 last week.

Because of what IBM has done globally to help people get access to safe water, to help with solar forecasting, and to help deliver better outcomes in healthcare, for example, I tend to have a very positive attitude towards IBM.

So I ventured to the conference with high hopes of what I was going to learn there. and for the most part I wasn’t disappointed. IBM had some very interesting announcements, more on which later.

However, there is one area where IBM has dropped the ball badly – their Cloud Services Division, Softlayer.

IBM have traditionally been a model corporate citizen when it comes to reporting and transparency. They publish annual Corporate Responsibility reports with environmental, energy and emissions data going all the way back to 2002.

However, as noted here previously, when it comes to cloud computing, IBM appear to be pursuing the Amazon model of radical opaqueness. They refuse to publish any data about the energy or emissions associated with their cloud computing platform. This is a retrograde step, and one they may come to regret.

Instead of blindly copying Amazon’s strategy of non-reporting, shouldn’t IBM be embracing the approach of their new best buddies Apple? Apple, fed up of being Greenpeace’d, and seemingly genuinely wanting to leave the world a better place, hired the former head of the EPA, Lisa Jackson to head up its environmental initiatives, and hasn’t looked back.

Apple’s reporting on its cloud infrastructure energy and emissions, on its supply chain [PDF], and on its products complete life cycle analysis, is second to none.

This was made more stark for me because while at InterConnect, I read IBM’s latest cloud announcement about their spending $1.2bn to develop 5 new SoftLayer data centres in the last four months. While I was reading that, I saw Apple’s announcement that they were spending €1.7bn to develop two fully renewably powered data centres in Europe, and I realised there was no mention whatsoever of renewables anywhere in the IBM announcement.

GreenQloud Dashboard

Even better than Apple though, are the Icelandic cloud computing company GreenQloud. GreenQloud host most of their infrastructure out of Iceland, (Iceland’s electricity is generated 100% by renewable sources – 70% hydro and 30% geothermal), and the remainder out of the Digital Fortress data center in Seattle, which runs on 95% renewable energy. Better again though, GreenQloud gives each customer a dashboard with the total energy that customer has consumed and the amount of CO2 they have saved.

This is the kind of cloud leadership you expect from a company with a long tradition of openness, and the big data and analytics chops that IBM has. Now this would be A New Way to Think for IBM.

But, it’s not all bad news, as I mentioned at the outset.

IBM Predictive Maintenance

As you’d expect, there was a lot of talk at InterConnect about the Internet of Things (IoT). Chris O’Connor, IBM’s general manager of IoT, in IBM’s new IoT division, was keen to emphasise that despite the wild hype surrounding IoT at the moment, there’s a lot of business value to be had there too. There was a lot of talk about IBM’s Predictive Maintenance and Quality solutions, for example, which are a natural outcome of IBM’s IoT initiatives. IBM has been doing IoT for years, it just hasn’t always called it that.

And when you combine IBM’s deep expertise in Energy and Utilities, with its knowledge of IoT, you have an opportunity to create truly Smart Grids, not to mention the opportunities around connected cities.

In fact, IoT plays right into the instrumented, interconnected and intelligent Smarter Planet mantra that IBM has been talking for some time now, so I’m excited to see where IBM go with this.

Fun times ahead.

Disclosure – IBM paid my travel and accommodation for me to attend InterConnect.

post

Apple, cloud computing, and enterprise supply chain management

Solar power

Apple’s recent announcements around renewables and supply chain transparency, put the major cloud providers to shame.

Apple had a couple of interesting announcements last week. The first was that they were investing $848m in a 130MW solar farm being built by First Solar in California. With this investment, Apple enters into a 25 year power purchase agreement with the solar farm, guaranteeing income for the solar farm, and securing Apple’s energy bills for the next 25 years in California. According to First Solar this is the largest agreement in the industry to provide clean energy to a commercial end user, and it will provide enough energy for Apple to fully power its headquarters, operations and retail stores in California, with renewable energy.

For it’s data centers, which hosts Apple’s iCloud, App Store, and iTunes content, Apple uses 100% locally generated, renewable energy. It’s Maiden, North Carolina data centre, for example, uses a combination of biogas fuel cells and two 20‑megawatt solar arrays — the largest privately owned renewable energy installation in the US, according to Apple. And it is now investing another $55 million in a third, 100-acre 17.5MW plant for the facility. You can find details of Apple’s other data centre facilities, and how they are powered by renewables, here.

Apple's Maiden Data Center Solar Array

Apple’s Maiden NC Data Center Solar Array

The second announcement from Apple was the publication of its 2015 Supplier Responsibility Progress Report (highlights here, full PDF here). Apple has been criticised in the past for workers rights violations in its supply chain, so it is good to see Apple taking very real steps, positive, to address this. The amout of detail, the steps taken, and the levels of transparency in the report are impressive.

On underage labour, for instance, Apple’s policy requires that

any supplier found hiring underage workers fund the worker’s safe return home. Suppliers also have to fully finance the worker’s education at a school chosen by the worker and his or her family, continue to pay the worker’s wages, and offer the worker a job when he or she reaches the legal age. Of more than 1.6 million workers covered in 633 audits in 2014, 16 cases of underage labor were discovered at six facilities — and all were successfully remediated.

Apple also has strict policies around work week hours, health and safety, sourcing of conflict minerals, and the environment. In order to increase its transparency, Apple publishes its Supplier Code of Conduct, its Supplier Responsibility Standards, its Conflict Minerals Standard, as well as a list of its smelter suppliers and its top 200 suppliers amongst other documents. And Apple’s comprehensive list of environmental reports are published here.

What does this have to do with cloud computing and the enterprise supply chain management?

Well, Apple recently partnered with IBM in order to expand its userbase into the enterprise space. And it has opened its iWork office suite to anyone with an Apple ID, no Apple device required – though this was long overdue.

Comparing Apple’s cloud offerings to actual enterprise cloud players (or any cloud players, for that matter), you see there’s a yawning chasm in terms of transparency, reporting, and commitment to renewables.

Of the main enterprise cloud players:

  • Microsoft publish their Citizenship Report here [PDF]. And while it is a decent enough report, it doesn’t go into anything like the level of detail that Apple does. On page 53 of this report Microsoft mention that 47% of the energy it purchases is renewable. It does purchase renewable energy certificates for the other 53% so it can report that it is carbon neutral.
  • Google doesn’t produce a corporate sustainability report. Instead it has this page which outlines some of the work it does in the community. Information on Google’s energy breakdown is sparse. What is published is found on the Google Green site, where we find that although Google has many investments in renewable energy, and Google has been carbon neutral since 2007, Google’s actual percentage of renewables is only 35%.
  • IBM has a good history of producing corporate reports (though it still hasn’t published its report for 2014). However on the energy conservation section of IBM’s corporate report, IBM reports that sources 17% of its electricity came from renewable sources in 2013. However, they go on to note that this does not include the energy data of Softlayer – IBM’s cloud platform.
  • Cloud Providers Energy and Transparency

  • And finally, Amazon, who have arguably the largest cloud computing footprint of any of the providers, is the worst performer in terms of reporting, and likely in terms of emissions. The only page where Amazon mentions emissions, claims that it has three carbon neutral regions, but fails to say how they have achieved this status (or whether they are third party audited as such). The same page also claims that “AWS has a long-term commitment to achieve 100% renewable energy usage for our global infrastructure footprint” but it fails to give any time frame for this commitment, or any other details on how it plans to get there.

Taking into account last November’s historic deal between the US and China on carbon reductions, and the upcoming Paris Climate Change Conference in December this year (2015), where there are very likely to be binding international agreements on carbon reductions. This will lead inevitably to increased requirements for CO2 reporting from the supply chain.

With that in mind, including the % renewable energy as one of the factors when choosing a cloud provider, would be a very wise move.

UPDATE:
As pointed out to me on Twitter:


In that case, you could always go with GreenQloud. GreenQloud bill themselves as a drop-in AWS replacement and being based in Iceland their electricity is 100% renewable.

Photo credit NAIT

post

EPRI releases open, standards based software, to connect smart homes to the smart grid

Smart Appliance Screen

Automated Demand Response (ADR) is something we’ve talked about here on GreenMonk for quite a while now. And in other fora, at least as far back as 2007.

What is Automated Demand Response? Well, demand response is the process whereby electricity consumers (typically commercial) reduce their usage in response to a signal from the utility that they are in a period of peak demand. The signal often takes the form of a phone call.

Automated demand response, as you would imagine, is when this procedure is automated using software signals (often signals of price fluctuation). The development of ADR technologies received a big boost with the development of the OpenADR standard, and the subsequent formation in 2010 of the OpenADR Alliance to promote its use.

Consequently, EPRI‘s recent announcement that it has developed automated demand response software, is to be welcomed.

In their announcement EPRI say the new software will:

provide a common way for devices and appliances on the electric grid to respond automatically to changes in price, weather, and demand for power, a process called automated demand response (ADR).

ADR makes it possible to translate changes in wholesale markets to corresponding changes in retail rates. It helps system operators reduce the operating costs of demand response (DR) programs while increasing its resource reliability. For customers, ADR can reduce the cost of electricity by eliminating the resources and effort required to achieve successful results from DR programs.

The EPRI ADR software was certified by the OpenADR Alliance. “Making this software freely available to the industry will accelerate the adoption of standards-based demand response” said Mark McGranaghan, vice president of Power Delivery and Utilization at EPRI.

This software has the potential to finally bring the smart grid into the home, allowing smart appliances to adjust their behaviour depending on the state of the grid. Some manufacturers have been fudging this functionality already with a combination of internet connected devices and cloud computing resources (see Whirlpool 6th Sense device above). And others, like GE are planning to bring older appliances into the connected fold, by sending out wifi modules that add new sensor capabilities.

Connecting appliances to the grid has the ability to make them far smarter. We’ll be discussing this, and more IoT topics in far more detail at ThingMonk, our upcoming Internet of Things event, in Denver next month. Hope to see you there.

post

Tips for starting out coding for the Internet of Things

We attended the SAP TechEd && d-code events recently. One of the more interesting parts of the showfloor was the Internet of Things (IoT) area. In this area there were demos of Internet of Things technologies currently in use by the likes of port of Hamburg, SK Solutions intelligent crane solutions (of which, we’ll be publishing a video in a subsequent post), and Internet connected vending machines, amongst other displays.

Even more interesting than the demos though was the IoT hacking area. In this area, SAP staff worked to create interesting Internet of Things connected devices, and there were machines available with Arduino, Tessel, and Beaglebone microcontrollers and instructions on how to connect them to sensors, pull data from the sensors, and push that data up to the Hana Cloud Platform.

In the Las Vegas event the SAP staff created the scarecrow seen in the video above. This scarecrow would flash the LEDs in its eyes, move its head, move its arms, and fire a Nerf gun when commanded to do so over Twitter. In the slo-mo video above, it does all the actions at once. Apologies for the quality of the video, it was shot using a smartphone lying prone on the floor.

We spoke to SAP’s Craig Cmehil subsequently to get hints on how to start out learning about hacking Internet of Things projects at home and he supplied us with a list of resources.

Craig recommended getting started with one of the following kits:

For Arduino

While for Raspberry Pi there’s

The links above are direct links to these items on Amazon, and there are many more accessories available on the Sparkfun site.

 

Not sure what the differences are between an Arduino and a Raspberry Pi? Check out this great explainer on Read Write Web.

Now, having decided on your IoT platform, what about some good resources, well,

Arduino Starter Kit

  • if you are planning to include your kids in the process, then Raspberry Pi kid is a good blog to check out
  • Coder for Raspberry Pi is an open source project to teach kids how to build websites using the Raspberry Pi
  • Adafruit has some great lessons on coding for Raspberry Pi, like this one for temperature sensing
  • Adafruit also has lots for Arduino
  • The Arduino site has lots of resources available for all levels of learner

And if you are wondering about connecting these devices to the cloud, Rui Nogueira has a great two piece blog post with detailed instructions for Raspberry Pi here.

If hacking microcontrollers is your thing, or you think it could be, then our ThingMonk event next week in the UK is the place to be. It is a three day event with day one being hacking, day two is IoT tech talks, and day three (called Business of IoT) is business related IoT talks.

post

The coming together of the Internet of Things and Smart Grids

I was asked to speak at the recent SAP TechEd && d-code (yes, two ampersands, that’s the branding, not a typo) on the topic of the Internet of Things and Energy.

This is a curious space, because, while the Internet of Things is all the rage now in the consumer space, the New Black, as it were; this is relatively old hat in the utilities sector. Because utilities have expensive, critical infrastructure in the field (think large wind turbines, for example), they need to be able to monitor them remotely. These devices use Internet of Things technologies to report back to base. this is quite common on the high voltage part of the electrical grid.

On the medium voltage section, Internet of Things technologies aren’t as commonly deployed currently (no pun), but mv equipment suppliers are more and more adding sensors to their equipment so that they too can report back. In a recent meeting at Schneider Electric’s North American headquarters, CTO Pascal Brosset announced that Schneider were able to produce a System on a Chip (SoC) for $2, and as a consequence, Schneider were going to add one to all their equipment.

And then on the low voltage network, there are lots of innovations happening behind the smart meter. Nest thermostats, Smappee energy meters, and SmartThings energy apps are just a few of the many new IoT things being released recently.

Now if only we could connect them all up, then we could have a really smart grid.

In case you are in the area, and interested, I’ll be giving a more business-focussed version of this talk at our Business of IoT event in London on Dec 4th.

The slides for this talk are available on SlideShare.

post

Technology for Good – episode thirty seven with Mike Maney

Welcome to episode thirty seven of the Technology for Good hangout. In this week’s show our guest is independent spin doctor Mike Maney. Mike is a regular attendee, and supporter of our annual Monktoberfest conference, and an all-round good guy!

Some of the more fascinating stories we looked at on the show, included a look into the latest developments in mobile payments, Microsoft making Office free on all mobile platforms, and Facebook launched it’s own Tor site.

Here is the full list of stories that we covered in this week’s show:

Climate

Energy

Hardware

ePayments

Apps

Security

Wearables

3d Printing

Transport

Sustainability

post

GE publishes Grid Resiliency survey

GE Grid Survey Infographic

GE’s Digital Energy business produced this infographic recently, based on the results of its Grid Resiliency Survey measuring the U.S. public’s current perception of the power grid. The survey was conducted by Harris Poll on behalf of GE from May 02-06, 2014 among 2,049 adults ages 18 and older and from June 3-5, 2014 among 2,028 adults ages 18 and older.

Given the fact that hurricane Sandy was still reasonably fresh in people’s minds, and that polar vortices meant that early 2014 saw particularly harsh weather, it is perhaps not surprising that 41% of the respondents East of the Mississippi were more willing to pay $10 extra a month to ensure the grid is more reliable. A further 34% of those leaving West of the Mississippi would be willing to pay more for a more reliable grid.

What is most surprising is that the numbers are so low, to be honest. Especially the 41% figure, given that energy consumers East of the Mississippi had three times as many power outages as those living West of the Mississippi.

What’s the alternative to paying more? Home generation? Solar power is dropping in price, but it is still a very long term investment. And the cost of a decent generator can be $800 or more. And that’s just to buy it. Then there’s fuel and maintenance on top of that. As well as the inconvenience an outage brings.

Here in Europe, because most of the lines are underground, outages are very rare. The last electricity outage I remember was Dec 24th 1997, after a particularly severe storm in Ireland, for example.

The really heartening number to take away from this survey is that 81% of utility customers expect their energy company to use higher levels of renewables in the generation mix. If that expectation can be turned into reality, we’ll all be a lot better off.

post

Technology for Good – episode thirty six with Esteban Kolsky

Welcome to episode thirty six of the Technology for Good hangout. In this week’s show our guest is independent analyst Enterprise Irregulars, but this was the first time Esteban and I had had a face-to-face conversation (or screen-to-screen, more accurately!).

The change of clocks in Europe the weekend before the show almost derailed us, and there was a mix-up (my fault) whereby Esteban didn’t get to join the show until twenty minutes in, but still, it was a great show and we had some awesome discussions.

Some of the more fascinating stories we looked at on the show, included some major moves on the energy storage front, big announcements from Google and Microsoft on the health/fitness front, and the new partnership between Twitter and IBM.

Here is the full list of stories that we covered in this week’s show:

 

Climate

Energy

Health

Transparency

Social

Apps

Hardware

Wearables

Comms