Rackspace claims cloud is Green but fails to provide data

Rackspace

Rackspace’s Director of Sustainability Melissa Gray, wrote a piece recently on the Rackspace blog titled The Greenest Computing is Cloud Computing.

Given that Cloud computing’s impact is a topic we cover regularly here on GreenMonk, we were excited to see a cloud provider address this issue, especially when this provider is one we have covered favourably in the past.

However, we were disappointed with the article due to it’s lack of any specific data to prove its case. Here are some quotes from the piece:

Every watt Rackspace uses is tracked — It came from somewhere (a power company, a generator) and it went somewhere (an office, a data center to power a server or power infrastructure).

Great – so how myuch power does Rackspace use, and what are its emissions?

We continually take steps to improve energy efficiency and reduce consumption of other natural resources.

Nice, so how much were Rackspace’s emissions in 2010, how much did you reduce them by in 2011, and what’s your target for 2012?

How much of those emissions were produced by your cloud infrastructure? And how much emissions did you displace by doing so?

We left the following comment on the Rackspace blog – it hasn’t shown up there yet, it is probably stuck in moderation somewhere (obviously they wouldn’t refuse to publish it):

Hi Melissa,

Nice article – well written but I notice you managed to avoid mentioning Rackspace’s emissions anywhere in the piece.

You need to publish some hard data to prove that “the Greenest computing is Cloud computing” – it is not enough just to say so.

If an organisation has an in-house email server, we can relatively easily measure its energy utilisation, and from that calculate its emissions. If it moves to a Rackspace server for the organisation’s email, we now have no way of knowing its emissions. If you are not publishing them, for all we know, their emissions are significantly higher than they were when they were in-house.

If, as you say, “Every watt Rackspace uses is tracked”, then it should be straightforward to report on energy use to your customers (my utility co. can do it). Will Rackspace do this? Or better yet, will Rackspace build this functionality into OpenStack, so all OpenStack users can do this?

Btw, I assume your new data center in Australia was sited based on access to renewables?

We await Rackspace’s response.

Image credit Scott Beale / Laughing Squid

Use open source platforms to find cloud computing’s energy and emissions footprint

Dials

Regular GreenMonk readers will be very aware that I am deeply skeptical about claims that Cloud Computing is Green (or even energy efficient). And that I talk about the significant carbon, water and biodiversity effects cloud computing can have.

One of the biggest issues with any claims of Cloud Computing being energy efficient, or Green, is the lack of transparency from the Cloud Computing providers. None Almost none of them are publishing any data around the energy consumption, or emissions of their Cloud infrastructure (article updated from “None of them” to “Almost none of them…” after comments from Memset and Greenqloud in the comments section below). Without data to back them up, any claims of Cloud computing being efficient are worthless.

Last week, while at the RackSpace EMEA Analyst day, we were given a potted history of OpenStack, RackSpace’s Cloud Computing platform. OpenStack was jointly developed by NASA and RackSpace and they open-sourced it with an Apache License in July 2010.

Anyone can download OpenStack and use it to create and host Cloud Computing solutions. Prominent OpenStack users include NASA, RackSpace (not surprisingly), AT&T, Deutsche Telecom, HP and IBM.

What has this got to do with Cloud Computing and energy efficiency I hear you ask?

Well, it occurred to me, during the analyst day, that because OpenStack is open source, anyone can fork it and write a version with built-in energy and emissions reporting. What would be really cool is, if this functionality, having been written, became a part of the core distribution – then anyone deploying OpenStack, would have this functionality by default.

And, OpenStack isn’t the only open source Cloud platform – there are two others that I’m aware of – Citrix’s CloudStack and Eucalyptus. Having the software written for one open-source platform, should allow reasonably easy porting to the other two.

Of course, with the software written as open-source, there could be constant improvement of it. And as part of one of the cloud platforms, it should achieve widespread distribution quickly.

Having energy and emissions information available, will also allow inefficiencies in Cloud infrastructure to be quickly identified and fixed.

So, the next step is to get someone to write the software – anyone up for it?

Or, what are the chances of getting someone like HP, IBM, RackSpace, or even NASA to sponsor a hackathon whose aim is to develop such software?

Photo Credit Jeremy Burgin

Efficiency and Ecological Responsibility of Cloud Computing (including water footprint)

A BrightTALK Channel

Unfortunately the provider for this webinar requires a login to listen to this discussion. If you don’t wish to register, my username is [email protected] and my password is 000000

Mark Thiele from Switch recently invited me to participate in a webinar he was moderating on the Efficiency and Ecological Responsibility of Cloud Computing which took place yesterday evening.

Also participating in the discussion were Harkeeret Singh (aka Harqs) Global Head of Energy & Sustainable IT at Thomson Reuters and Jason Hoffman CTO and Founder of Joyent.

The discussion started off asking whether or not cloud computing is efficient and the panel was fairly unanimous in deciding that cloud computing is not efficient. The main point I made here is that because cloud providers are not publishing energy information, it is not possible to say whether or not cloud computing is energy efficient.

At around 15 minutes into the conversation, we shifted on to asking whether or not cloud computing is green. There was a good discussion on this with the fact that efficiency not necessarily being green being one of the main points raised. Also brought up was how plummeting costs of cloud computing are leading to an explosion in consumption – in itself not very green. And as a counterpoint Harqs raised the fact that lower costs are beneficial to start-ups in developing countries.

Then 33 minutes into the conversation, we started discussing the impacts on water of cloud computing. One point I raised is that if you run a 25kW rack for one hour the water footprint from electricity productions is:

  • 0.1 litres if the electricity comes from wind
  • 2.5 litres if the electricity comes from solar
  • 45 litres if the electricity comes from coal and
  • 55 litres if the electricity comes from nuclear (and this doesn’t include the considerable water footprint of uranium mining).

Nuclear power plants use phenomenal amounts of water. From the Union of Concerned Scientists report [PDF] on this

the typical 1,000 Mwe nuclear power reactor with a 30oF ?T needs approximately 476,500 gallons per minute. If the temperature rise is limited to 20oF, the cooling water need rises to 714,750 gallons per minute. Some of the new nuclear reactors being considered are rated at 1,600 Mwe. Such a reactor, if built and operated, would need nearly 1,144,000 gallons per minute of once-through cooling for a 20 degree temperature rise.

Actual circulating water system flow rates in once-through cooling systems are 504,000 gpm at Millstone Unit 2 (CT); 918,000 gpm at Millstone Unit 3 (CT); 460,000 gpm at Oyster Creek (NJ); 311,000 at Pilgrim (MA); and 1,100,000 gpm at each of the twp Salem reactors (NJ).

And that level of water consumption has big biodiversity effects – imagine the large water intakes required for a nuclear plant taking in one million gallons of water per minute. These water intakes don’t just take in water, they also take in any life forms in that water. None of these life forms survive going through a nuclear power plant obviously. And then there’s the heat pollution effects from the warmer water coming from the power plant outlets.

Towards the end of the discussion Jason asked if making this data available to end users would be a clear differentiator for Joyent. I responded that it would be because a) there is a demand for this information and b) because having seen how Greenpeace successfully went after Facebook, (and in their latest report are now targeting Apple, Amazon and Microsoft) for their dis-regard for the footprint of their cloud computing infrastructure, nobody wants to be the next company in Greenpeace’s sights.

Harqs added that any company pursuing such a policy should open-source it so everyone could contribute to the development of constantly improving reporting standards.

The highlight of the webinar for me was at 47:30 when Jason committed to doing just that.

All in all a superb discussion with a fantastic outcome. I hope you enjoyed it as much as I did.