Is Cloud Computing Green?

I gave the keynote address at the Digital Trends 2011 event organised by HePIS and CEPIS in Athens recently. My talk was on Cloud Computing’s Green Potential and in my presentation, I claimed that Cloud Computing is NOT Green.

I started the talk by explaining what Cloud Computing is and the many advantages it can bring to companies. However, because none of the Cloud providers are publishing energy figures around Cloud computing, we can’t say whether or not Cloud computing is energy efficient.

I went on to point out that even if Cloud is energy efficient (and we have no proof that it is), that is not the same thing as being Green.

My slides are available on my SlideShare account and a transcript of my talk is here:

Okay, so my talk this morning is on Cloud Computing and its Green Potential. So a quick couple of words about myself.

So my name is Tom Raftery, I work for an industry analyst firm called RedMonk. My area of interest within RedMonk or the area I specialize in is energy and sustainability. We have termed the practice within RedMonk that concentrates on energy and sustainability GreenMonk. So the place that I blog at is at

And a little bit about my past. I worked in an organization called Zenith Solutions back in the 90s and early 2000s, and Zenith Solutions was a software company creating what has now become termed cloud applications. At that time we called them web applications, they were web based software with the database backend online.

Then I worked for a company called Chip Electronics in the early 2000s and Chip Electronics was again a company which created Enterprise Resource Planning, ERP applications which were cloud delivered, at the time we called it Software as a Service. No at the time we called it active service provisions, since become Software as a Service. And I am also a co-founder and Director of CIX, which is a hyper energy efficient data center based in Cork in Ireland. So I know both from the hardware side and the software side.

I mentioned my blog on, I am on Twitter and My email address is there, my mobile phone number is there, please don?t ring it now. And this site here, the last line there and I am sorry for the bullet points, I don?t normally use them, but I did just here and in one other slide. is a site where you can upload a presentations.

So, this presentation I am giving this morning, I uploaded it to SlideShare earlier this morning, so it?s already online there at that site and if you go there now you?ll see it has already been viewed over 277 times so far. So, it?s a great site for getting your talks out all available, it?s also downloadable there.

One thing you?ll notice as well about the structure of my talks is a lot of them have images like this, but they also have this bit of text at the bottom which you can?t read, don?t try right now, but what they are is those are links to the source material. So, if at any point you do download the presentation you can go and click on the links, they are clickable links you can click on them and see where I?ve got the information from.

So that?s me, who are you guys?

A couple of questions, so how many people here have deployed applications to the cloud? Not very many. How many plan to? A few more, okay. How many people here think that cloud computing is green? Okay, good few people. Right. I hope to burst that bubble, unlike Nancy who spoke just a minute ago, I am not a, I am not a believer that cloud computing is green and I hope to explain why. I am a huge fan of cloud computing, I have to say, I use it extensively, going back to the slide for a second.

The Chip application, the Zenith stuff, the GreenMonk, Twitter, SlideShare even my email are all cloud delivered. Our organization RedMonk we use Google applications for domains for our email, so my email is cloud delivered as well. So I am a big user of and believer in cloud for lots of things. But I just don?t happen to believe it?s green.

So what is cloud computing? Well at kind of first blush it?s software that?s delivered in a browser, so that?s an very easy definition of it, something we can all kind of sign up to it. It?s a lot more complex than that at various other levels and I?ll go through a couple of those other levels as well, just very briefly to kind of give you that the kind of complexity that?s involved in it, but I am not going to go into any great depth. So it?s also nothing that?s very new, this is the original sign up screen for Hotmail.

Hotmail was an email application developed and sold to Microsoft back in ?97 for $450 million if memory serves. But this was before it was sold to Microsoft, this was the original sign up screen when they launched in July ?96 and it was one of the first widely used Software as a Service or cloud application.

So cloud is nothing new, it keeps getting rebranded, so the cloud name is newish alright, but the delivery mechanism is not that new. It actually harps back to mainframe computing back in the 60s.

So there are several types of cloud computing and the first type, the first level of cloud computing is kind of Software as a Service. That?s where you kind of take your packaged software and convert it into something as I mentioned already delivered in a browser. And I mean you probably are aware of these I mentioned Hotmail and its analogs the Google applications, there is also Zoho, there is social networking the Twitter that I mentioned, SlideShare all these kind of things, they are all Software as a Service.

So they are just basic applications that you access through a browser. But you can go back one level of abstraction from that to where you get to what?s called platform as a service. And don?t worry about these acronyms basically a lot of the times you don?t need to know this stuff, the platform as a service stuff is where you, as I could say, you go back one level of abstraction and you give people a platform on which to deploy cloud applications.

And the kind of platforms that you can get are ones like the Google app engine and Amazon and Microsoft?s Azure, these are the kind of platforms that are available if you want go down that route. Most people don?t need to go there, but if you do that kind of stuff is available as well. And then you can go back one further level of abstraction where you are actually delivering Hardware as a Service and this is called Hardware as a Service or Infrastructure as a Service and both names are valid, HaaS for hardware or IaaS for infrastructure as a service and that?s where you?re delivering stuff like networking, storage, compute, CPU cycles that kind of thing as a service.

And VMware, Rackspace, OpenStack again Amazon with their EC2 and their S3 services are those kinds of types of cloud computing. If that?s a little confusing and I know it can be, this is a slide which is also confusing, but if you actually stop and study it in your own time, you could download this application and if you are interested about it, this is a good way of seeing how the different types of cloud computing stack up as it were.

So over here on the very left, you have your traditional packaged software with the entire stack from networking up through applications where you manage the entire stack on your machine. So that?s the traditional Microsoft Office whatever applications, you do the whole thing.

Over on the other side you got your Software as a Service, something like Google apps or domains or one of these things where the provider the Google or whoever are responsible for the entire stack, all you have is a browser. And then in the middle you have the two other ones, the platform as a service, where the vendor managers up to here and you manage the applications and data or infrastructure where the vendor managers is just this part and you manage the rest.

So that?s the kind of way it stacks up. As I say on the deck itself there is a link down there to where you can find that image if you are interested in checking into it. It?s quite a nice way of seeing the differences between the different types of cloud computing.

And then just to complicate things a little further, there are different deployment mechanisms. You can have private cloud, private cloud is hosted by yourself on your own infrastructure behind your own firewall. You can have public cloud which is what most people are familiar with or you can have a hybrid where you have some stuff private, some stuff public and that?s one that a lot of people are looking at, because it means you can have your data behind your firewall, but the functionality you are accessing it from public. So your stuff remains on premise.

And that?s quite important, because as Nancy alluded to, there can be a lot of issues with the data in cloud computing, because for example if you are a European company do you really want your data hosted on servers in US territories where for example the data privacy laws are a lot more lax. So I have spoken to several European companies who have said categorically they will not use cloud computing if their data is going to be hosted in US territories. It?s only if it?s in the EU and only if they know where in the EU. So you are noticing cloud providers taking that on board and starting to become aware of those issues and while they can?t change US law, they can start providing storage mechanisms that they are guaranteed to be in region.

So that?s cloud computing and the next question we get to is, is this really energy efficient because lots of people say it is and even Nancy alluded to that report from the Carbon Disclosure Project which I?ll blow apart in a minute. They aren?t the only ones Microsoft, Accenture and WSP environment brought out this story in November of last year. And this is the actual title of the story, where they say it shows significant energy in carbon emissions reduction potential from cloud computing and again the link to the report is down there at the bottom.

The difficulties I have with that are several, first is Microsoft are a cloud computing provider so they kind of skin in the game. The second is that, they don?t actually use any hard data, it?s all imputed. And the third is that after months and months of work from all these people the best they could come up with is they could say it has potential. Yeah it has potential to end world hunger and bring on world peace and fix the euro, anything kind of potential. So that?s a non-report.

Cloud computing has phenomenal advantages, don?t get me wrong, I am a big fan. So if you are into traditional IT, you know well that if you are deploying a new application or a new server it?s pain staking, you have to go through an RFP process, a tender process, PO process. You have to put, you have to go to tender and you have to get that — when you have to place the order, the order then can take several weeks from the supplier. When it comes in, it goes into the logistics area, if you got to get the guys in warehousing to tell you where the server is, you have to get the server, you have got to put the company image on the server, you got to install the applications, you got to do testing, you got to patch the server, the list goes on and on. Basically you want to deploy a new server, it?s a process that can take weeks to months.

You deploy a cloud application, there is usually no RFP and no PO process because there is — the capital cost is minimal. So typically the time to deploy for a cloud application shrinks from weeks to months to hours to minutes depending on what you are deploying, so phenomenal, cloud is fantastic for streamlining that kind of stuff.

It?s also great for what?s called dynamic provisioning. So this is the Alexa graph, the website traffic of a website for the Australian Open. The Australian Open is a big tennis competition happens in Australia every January. So you?ll notice 11 months of the year no traffic to the site, come December, January vroom, spike, that?s 2006, 2007, larger spike 2008, larger spike and the spikes keep getting bigger as you go in that direction.

So if you were the website owner for the website you would need to have — if there were no cloud computing options you would need to have servers that could hit and deal with the traffic at this growing spike for 12 months of the year when the traffic is only there one month of the year. But with dynamic provisioning and cloud computing you can use the elasticity of the cloud to turn up the resources assigned to that site as the traffic starts to build up in December and January and then as the traffic falls off, you turn it back down again.

So in that respect cloud computing is fantastic as well, you are not using resources needlessly. You?ve also got the idea of multi-tenancy and if you can?t see what?s in this picture it?s actually a Mini Cooper with 26 people inside in her, EMC sponsored it as the world record attempt to fit people into a Mini Cooper and they fit 26 people into it. So they stuff people into it with multi-tenancy in cloud computing it means you are sharing applications across companies, lots of different companies often competitors are using the same single version of the application.

And that?s fantastic, that adds greater value. You know, you have only one instance of the application which is great as well for updates, updates of the application are instantly deployed. You know, you don?t have to download the latest update and apply it to the test server and make sure it works in the environment, the whole thing, you know, it?s just instantly on.

This is the issue of server utilization which again Nancy referred to, Nancy you stole my talk, come on. So this is a typical graph of server utilization and you can see this the memory part, but this is the server utilization and it?s at zero percent here. And well that?s a bit of a outlier, you?ll often and get in normal server, you?ll often get utilizations in single digits 7, 8% server utilization for traditional servers in data center environments. But with the advent of virtualization and cloud computing you can ramp that up significantly. So that should be quite energy efficient.

Then you have got this kind of outlier thing called chasing the moon, which you may or may not have heard off. It?s one I am kind of found of as an idea, but not many people have deployed it yet. People are kind of talking about it as out there, and what it is, is with cloud computing if you?ve got data centers in say, US, West Coast, another in Northern Europe or Southern Europe, Northern European typically because it?s cooler there and cooler I mean colder not more ?hip?. And you?ve got another data center say somewhere in Asia or Eastern Russia. Then you?ve got the time zones covered about eight hours apart. So if you have an application in those three centers, you can move the compute to where energy is cheapest at any particular point in time. So if you are doing that typically energy is cheapest when it?s in highest supply, when it?s in highest supply and it?s cheapest, its actually, this is on the wholesale markets, it?s actually greenest as well.

So when electricity is at its cheapest, it?s actually also at its greenest that?s ? it?s kind of counter intuitive but I can explain that if any one who is interested later.

So if you move your compute to where the energy and the compute is cheapest at any point in time, it?s typically night time when wind is blowing and at that time you are chasing the moon, you are putting your applications wherever the moon is out, it?s called chasing the moon.

And so it?s something you could only do — something that?s only made possible by the likes of cloud computing. Your information is ubiquitous, it?s wherever you have an internet connection, so your road warriors, your sales people on the road, can access the application while sitting up in the beach.

It also enables a lot more home working, homeshoring, teleworking whatever you want to call it. And people like ATT, IBM, lots of big companies are huge fans of this. IBM reported a couple of years back that 25% of their employees did teleworking and those 25% were saving IBM $700 million a year. That?s significant savings and a lot of that savings comes from a lower real estate footprint and a lower energy footprint because of the lower real estate footprints.

So is it energy efficient or lot of those savings coming from less commuting or from less building stock or are they from offsetting your energy? So if you are working from home you are still burning energy, it?s just not in your company?s building, your company isn?t accounting for it anymore. These are kind of questions we are not sure of, there hasn?t been any definitive studies either way, and it?s difficult anyway because it differs in every company and every geography.

One huge problem I have with cloud computing and people saying that cloud computing is energy efficient is that none of the cloud providers are publishing data around their energy utilization, not one of them. So I often do a kind of a hands up exercise at this point and I don?t know if it?ll work here, because very few people admitted that they were going to be putting stuff in the cloud, but let?s raise hands again. Hands up everyone who has or plan to deploy applications to the cloud? Okay, so keep your hands up, keep your hands up. Now keep your hands up if you know the current energy utilization of the applications you are going to deploy to the cloud or the energy applications you have already deployed to the cloud, if you know how much energy your applications burn, keep your hands up. Okay we got one, anyone else just the one? Good. Okay, keep your hand up, we are not finished. Okay keep your hand up if you know the energy utilization of that application in the cloud. You do, is it a private cloud?

And they are giving you the energy utilization of that?

Okay, I am interested in that because I do a lot of work for SAP and they can never tell me the energy utilization of any of their cloud infrastructure.

I think, okay I must get back to you on that because I — if that is the case it must be very new, because it?s not something they?ve ever shown me before and if they do it it?s often kind of what we call humbligated it?s often — they will give you an average but they won?t tell you exactly what your application and what your users are utilizing which is what you need to know.

So as I say with the possible exception of SAP, most cloud providers do not provide the data. So without that data, we have no way of knowing if our applications are in fact energy efficient in the cloud. Even if they are, energy efficiency is not the same as being green. Just because something is energy efficient does not mean it?s green, and this is a very common mistake that people make.

So what is green? Well I’m also going to quote from the CDC report that Nancy mentioned. And this CDC report, it?s called Cloud Computing – The IT Solution for the 21st Century and again there is a link to it there.

One of the quotes that the CDC put into that was that that a typical food and beverage firm transitioning it?s HR application from dedicated IT to public cloud can reduce CO2 emissions by 30,000 metric tons over five years. That sounds good, I buy that, that sounds quite green actually. They also went on though in their executive summary to say allowing companies to maximize performance, drive down costs, reduce inefficiency, and minimize energy use and therefore carbon emissions. So they have made the classic fundamental mistake of thinking that reducing or making something energy efficient makes it green or reduces emissions. There is nothing that says that is the case. I will tell you why?

And by the way Nancy and this is the blog post I wrote on GreenMonk where I explain in significant detail why the CDC report is completely flawed. So there is a link there you can go and have a look.

I will give it to you later, I will give you the link later. So two reasons why that report is deeply flawed. One of them is it?s based on assumptions and they say so in their model, they say their model is based on assumptions and the second is based on metric called PUE. So I?ll get the PUE in a second. PUE is Power Usage Efficiency. Anyone here familiar with the term PUE? Couple are, okay. So I?ll get to in a second. They based their model on this PUE metric, which is a widely used metric. But they have based it on a average PUE across the entire United States which is put out by the EPA, so that?s not really very indicative firstly.

But secondly, PUE the measurement itself, it?s a ratio of the total amount of power used by data center compared to the power deliver to the computer equipment. So the total power delivered to a data center is the power delivered literally to the door of the data center, which goes to power of the lighting, it goes to power the cooling, it goes to power of the UPSs, the whole thing, that?s the total power. And it?s a ratio of that to the amount of power which actually makes to the IT equipment. So the closer your PUE figure is to 1.0, the better.

Now couple of problems with PUE as a metric. The first is there hasn?t traditionally been any standard about where you measure the power. It?s measured at the meter, the power meter, the electricity company power meter but in data centers that is often been measured on the high voltage site, the medium voltage site, or the low voltage site depending on the data center, depending on where they put the meter. And of course if you are measuring out at these different place one data center measures at one place, another at another place you can?t cross compare because you are leaving out the loses that occur in the conversion from high to medium to low voltage.

So right there the lack of standardization that?s been worked on at the moment, and it is getting better, they are start to standardize but traditionally it hasn?t been standardized. So that?s one issue straightaway.

But even more important is, quick look at this graph here, if I have a data center which takes in two megawatts of power and of those two megawatts of power, one megawatt goes to powering the servers, then I have a PUE of 2.0, very simple. However if I realize that my one megawatt isn?t being used very efficiently, and I realize that some of my servers are being under utilized, may be I?ll virtualize some of them and I shut some of them down. Then my power draw from my IT equipment drops to 0.75 a megawatt. My total draw drops to 1.74 and my PUE goes up to 2.33. Remember I said PUE closer to 1.0 means you are more efficient. I?ve actually made it more efficient and my PUE has gone from 2 to 2.3, so it?s a huge problem right there with the PUE metric.

Another issue and I am sorry this is a little bit complex, but I?ll walk it though it again another issue with PUE is it takes no account of carbon. So top line is a typical data center, typical data center in a European country, a European country where the supply of power causes CO2 per kWh that?s not unusual that?s a pretty average figure. So if that typical data center has a PUE of 1.5, just quiet good, then we get 1.5 by 0.5 we get 0.75 kg CO2 per kWh is the IT carbon intensity, is how much the IT equipment is producing in terms of CO2.

So if we have a data center with the a good PUE 1.2 and that good data center is drawing mostly from coal-fired power, so it?s got a supply carbon intensity of 0.8 kilos, the you are — 0.8 by 1.2 means you are producing — even though you have got a good PUE in your data center, you are producing 0.96 kilo CO2 per kWh.

On the other hand if you have got a really bad data center with a PUE of 3, very inefficient data center, PUE of 3 but is fired mostly by renewables. So your carbon intensity on your supply is 0.2, but still it?s not 0 it?s 0.2, it?s significant, there is still carbon being produced per kWh. 0.2 by 3 gives you 0.6, which is significantly less. It?s, you know, 60% of the carbon intensity of the data center with a PUE of 1.2.

So PUE is no indicator whatsoever of how green some thing is, it?s a very bad metric. There is other metric called a CUE the Carbon Usage Efficiency but it is not widely used by the industry unfortunately.

So given that, the report that the CDC produced could just as easily have said that your typical food and beverage firm transitioning HR to a dedicated public cloud could increase CO2 emissions by 30,000, just as valid. They pick the number out of the air and they base it on a flawed metric, so it?s just as valid to say it could increase CO2 as decreased CO2.

And a good example of this in fact is Facebook, Facebook build this lovely new data center in Prineville, Oregon, they opened it early this year. Had an unbelievable PUE coming in around 1.08, highly efficient, they have open sourced it. If you go to you can get the blueprints for building the data center and the list of suppliers, so you can go on build that same data center yourself. They reduced their energy consumption per unit of computing by 38%, that?s fantastic, that?s really good.

Unfortunately, their energy supplier is a company called PacifiCorp. PacifiCorp produces 58% of its power from coal, this is their website, they say it themselves right there. They produce 9.6 million tons of coal from their own mines every year. They also produce another 12% of their electricity from natural gas, so that?s 70% they produce from fossil fuels, plus they also buy 22.5% of their power from other suppliers. Now they don?t say how those other suppliers generate theirs. So they get at least 70 and possibly significantly more of their energy from fossil fuels. So right there Facebook?s really impressive 1.02, sorry 1.08 PUE is blown out of the water by the fact that it?s all produced using carbon or almost all.

To contrast that this is the graph of power production on the Spanish grid. I picked Spain because I happen to live there and you can see that this was taken last Friday, the snap shot and again you can get information from the Red El?ctrica de Espa?a. The red bar here, or bar whatever it is area is coal, comes in around 20%, green one here is wind, the other is, the rest of the renewables put together except water, which is down here.

So on the Spanish grid, carbon intensity comes in around 20% at the moment based on that plus the gases and other 15% sorry. And that?s actually bad compared to the same grid two years ago. The same grid two years ago, coal was coming in single digits here on 9% and the reasons gone from the 9% two years ago to 20% today is because Zapatero, the now former President of the parliament comes from Castile and Le?n which is a coal producing part of Spain and he went to the EU and he petitioned for years to be allowed to give subsidies to the coal miners and the coal production in that part of Spain. And last February, sorry February 2010 he succeeded and they got 4.5 billion Euro in subsidies for producing coal in Spain and that?s a direct result, it?s scandalous.

Anyway that?s either here or there let?s move on. Dublin, I am originally from Cork, so I?ll talk of Ireland for little bit. Dublin has become a European, key European datacenter hub. Most of the big data center providers have significant operations in Dublin. Microsoft have their largest datacenter outside of US in Dublin. It provides the Microsoft Live and Azure services for EMEA. Similarly Amazon are there, Google are there, they all have significant centers there and they are all expanding. Google have announced new expansion as of Microsoft representatives.

Unfortunately, Ireland produces 84% of its electricity from Fossil fuels, that number is falling as it rolls out wind, it was a 87% a couple of years ago, but now its 84%. So that?s not really very green. On the other hand Apple have announced their iCloud service and their iCloud service is currently housed in this datacenter in North Carolina, it?s a photograph of it under construction. Unfortunately this datacenter gets 78% of its energy from Duke Energy who get it from, no they get all of their energy from Duke Energy, Duke Energy get their energy from 78% coal and nuclear.

Coal is obviously really bad, nuclear is also really bad, not just because of the Fukushima reasons, but you got to think as well, nuclear power plants have an enormous water footprint. And that is, it can often be devastating to the environment around them. But Apple have said in fairness to them that they have got a 121 acres site behind them that they are now clearing for scrub to install a solar facility, it will mitigate a little their emissions, a 121 acre solar facility is not going to complete power the plant and it certainly won?t power at night time but it will have at least.

Google are the really interesting player in this field, because Google have gone to extreme lengths to get their carbon footprint down to zero. They have signed power purchase agreements with Wind farms. A power purchase agreement is where you sign on the dotted line with a wind farm or any one in this case it?s wind farms in Google?s case, you sign on the dotted line and you say, for the next X years and in Google?s case its next 20 Years I will take all of your power, all of it.

For wind farms that?s a huge win because that means they can go to investors and say, we?ve got checks rolling in from Google for the next 20 years guaranteed and here is the contract, do you want to invest in us now. So obviously it will help them get investment inward investment. It?s a great win for Google on two fronts, one is they?ve got guaranteed renewable energy and the second is they?ve got guaranteed pricing for their energy for the next 20 years. How many people can say they know what the price of their electricity is going to be in 20 years?

So they have done it in a number of wind farms, this one is in Iowa, 114 megawatts, this one is in Oklahoma, another 100 megawatts. And they?ve gone to incredible lengths and this is the slide I mentioned earlier with all the bullet points and I?m really sorry this slide is more bullet points than I normally have in entire talks. So there is nine bullet points in this but it gives you an idea of the investments that Google have made in renewable energy.

The Potter Drilling one is for geothermal, Makani Power is for high altitude wind power. Solar City, the Atlantic Wind connection, that?s a — I can?t remember how long it is, it?s a massive offshore wind farm off the east coast of the US and they?ve invested in the infrastructure of that, they own a percentage of the infrastructure in that, in total Google have invested $850 million on renewables. So if anyone could be slightly green I guess in cloud it would be Google.

Having said that though, there is lot of having said that in this presentation I am sorry about that, it?s a complex area. Jevons paradox, William Stanley Jevons is an economist in the 19th century in England. And he realized that as steam engines were being made more efficient in burning coal, as they were getting more efficient at burning coal the amount of coal being burnt was actually going up not down. It was kind of counter intuitive but how it worked was as stream engines become more efficient the price dropped, more people bought them, more coal was burnt. And it?s similar with cloud computing. As cloud computing goes and starts taking off in adoption the resources that are used actually go up not down.

So cloud computing leads to an increase in consumption and this also then Parkinson?s Law and a curare of Parkinson?s Law which says data expands to fill the space available for storage, the more storage you have the quicker it fills up, you all know that. And a good example of that is when Gmail started in 2004 Hotmail had a 2 meg limit on the size of your inbox. Yahoo at 4 meg and gmail said, I am offering one gigabyte, blew them out of the water and suddenly they had catch up and go to one gigabyte, Google is now at 7.5 giga byte and they allow you to send emails of 25 megabyte, single email 25 megabytes.

So, also a nice quote I got from Infochimps? Flip Kromer and this really characterizes how cloud computing can promote consumption. And Flip said it very well when he said, EC2, which is one of Amazon?s offerings in cloud means anyone with a $10 bill can rent a 10 machine cluster with a terabyte of distributed storage for eight hours and because it costs virtually nothing to do it and because anyone can do it — it happens all the time. So that?s not very green.

You?re confused yet? So what if ultimate irony you had cloud delivered green software, Hara, Nootrol, SAP?s Carbon Impact OnDemand, these are all carbon management applications which are cloud delivered. Now, I am really confused I don?t know if they are green or not. Microsoft Iron Earth, cloud delivered using the Azure platform for managing air quality, water quality, noise pollution, that kind of thing, I think my head just exploded.

So my conclusion from all this is that cloud computing has a significant number of advantages, but being green isn?t one of them. One last thing if you are deploying stuff to the cloud, this is not really how you want to do it. Thanks very much.


Green Bits and Bytes for January 20th 2011

Green bits & bytes


Here are a few of the Green announcements which crossed my desk this week:

  1. A new scheme called SunShare launched in the UK this week. The scheme allows home-owners to invest in solar panels for their home for only a part of the upfront installation costs. This means that qualifying UK homes can now get a fully installed solar PV system for as little as ?3,999, they will benefit from free electricity and they will also be able to earn more than ?1000 a year from the government backed Feed-in Tariff scheme.

    The UK Feed-In Tariff scheme is one of the most generous in Europe, paying 41.3p per kWh of electricity produced, regardless of whether it is used by the home-owner or not. The tariff is guaranteed for 25 years and it is index linked for Solar PV Systems.

    ?The government will review the scheme in 2012, which is likely to see The Feed-in Tariff rates changed from April 2013 for any new homes applying for it. There is therefore a window of opportunity now for consumers to take advantage of the current rates on offer? according to Mark Wynn, Managing Director Avoline PLC, the company which launched SunShare.

  2. Semitech Semiconductor, a Power Line Communications (PLC) chip maker with chips designed to enable communications for the Smart Grid announced yesterday that they had completed its Series A financing raising AU$3.4 million.
  3. The Institute for Transport and Development Policy released a report on Wednesday entitled Europe?s Parking U-Turn: From Accommodation to Regulation [PDF]. The report examines European parking policies over the last fifty years and found that European cities are reaping the rewards of innovative parking policies, including revitalized town centres; reductions in car use; drops in air pollution and rising quality of urban life.
  4. SAP’s rollout of e-mobility infrastructure which I wrote up just before Christmas has now been extended to their German HQ in Walldorf. SAP, in conjunction with local utility MVV Energie, have taken delivery of 30 electric cars and will be testing use of them by their employees as part of their Future Fleet project.

    The cars will be powered exclusively with electricity from renewable sources and this will be important given that over 80% of SAP’s direct CO2 emissions in EMEA come from company cars.

  5. On-demand environmental software maker Locus Technologies, announced this week that they have been certified as compliant with SAS 70 (Statement on Auditing Standards No. 70). Given that Locus are a SaaS company (i.e. they host their clients environmental information) this is a vrucial certification to have achieved – it gives confidence to Locus customers and potential customers that their data is safe with Locus.

Photo credit .faramarz


Green bits and bytes for Dec 16 2010

Green bits & bytes


Some of the Green announcements which passed by my desk this week:

  1. We have written previously about the savings made possible by rolling out Digital Lumens Intelligent Lighting System (ILS) in a high-bay environment – well they have done it again! Their latest sale is to United States Cold Storage Inc., who deployed the ILS in its Hazelton Pa facility.

    USCS installed the lighting system in their recently built, 88,000-square-foot addition, and they can now light their facility for 3.5? per square foot per year, compared to 46? per square foot with traditional alternatives. USCS expects a return on investment of 14.6 months.

  2. SAP and PlaNet Finance’s joint project to help improve the incomes and living conditions for rural Ghanian women engaged in the Shea nut harvesting and Shea nut butter business posted a nice piece of good news during the week. Stanford University published a case study [PDF] which uncovered significant improvements in nut and butter quality. It also mentions how the women involved have organised into a network so they have a stronger negotiating position and they are achieving higher prices for their produce.
  3. JouleX is a company which helps organisations to monitor, analyse and manage the energy use and waste of IT systems connected to its internal network. JouleX announced this week that its JouleX Energy Manager (JEM) software has been accepted into the Cisco EnergyWise partner program – this enables Cisco to offer JEM as an energy management solution to its customers.
  4. Viridity, a data centre energy resource management software solution provider announced the appointment of Arun Oberoi to the position of President and Chief Executive Officer (CEO), effective immediately.
  5. According to a news release from Tropos Networks, Silicon Valley Power (SVP), the City of Santa Clara?s municipal electric utility, has selected Tropos? GridCom as the distribution area communications network for its smart grid program, SVP Meter Connect. SVP serves over 50,000 customers and it expects the SVP Meter Connect project to increase reliability of the utility?s distribution system and finally
  6. ERP software company Epicor announced [PDF] the release of their on-demand carbon accounting solution, Carbon Connect. Carbon Connect is a SaaS delivered carbon accounting solution which allows companies to identify, analyze, audit, track, manage, benchmark and report on their carbon emissions /environmental impact and energy consumption.

Photo credit .faramarz


SAP’s Sustainability Performance Management software launched

SAP BusinessObjects Sustainability Performance Management

I wrote a piece on SAP’s new Sustainability Performance Management (SPM) tool a few weeks back. At time of writing it was very much in the realms of speculation as the product was, as yet, unreleased.

Last Thursday, Dec 10th, SAP announced the release of the software and having been given a preview of the software the previous day by SAPs Charles Zedlewski, I thought it time to circle back with an update on my previous speculations.

It turns out that I jumped the gun a bit when I posited that:

SAP have taken the next logical step with their Sustainability report. They have productised it!

The current version of the SPM will not output a sustainability report similar to SAP’s hugely innovative one of earlier this year although executives I talked to would not rule out that coming in future versions.

What the SPM will do for organisations is reduce the amount of time spent tracking down, collating data and creating reports. It can automatically collect KPI data across all sustainability dimensions (economic, social and environmental) from a variety of sources, so customers can move beyond manual data collection and spreadsheet-based recording.

The library of nearly 400 KPI’s includes a variety of sustainability metrics, including those based on the Global Reporting Initiative (GRI) standard as well as the Walmart sustainability index. If you require customisation (and what organisation doesn’t?) building your own custom KPIs or editing the installed ones is quite straightforward.

The data can be pulled from existing SAP apps within the organisation, it can integrate with 3rd party systems or information can be entered manually and then quickly reported either internally or externally. Audit trail functionality helps ensure integrity and transparency of the data.

Two further things I would like to see from this application are:
1. The ability to output at the touch of a button a Sustainability Report similar to SAP’s recent one and
2. An on-demand option (on-demand is SAP for SaaS!) – an on-demand version would ensure that organisations are always using a version which is abreast of the latest green regulations

Having said that, this is a very solid looking v1 with an intuitive UI and a very comprehensive back-end.

I have a call with SAS this afternoon to learn more about their SAS for Sustainability Management product – it will be interesting to see how it stacks up beside SAP’s SPM.

Related articles by Zemanta:


Simon Wardley at the [email protected] Green IT Conference

Simon Wardley is a geneticist with a love of mathematics and a fascination in economics. Simon has always found himself dealing with complex systems, whether it’s in the behavioural patterns of ladybirds to modelling environmental risks of chemical pollution to developing novel computer systems to managing companies.

In this talk at the [email protected] Green IT conference, Simon gives a superb whistlestop talk on the topics of commoditisation, utility computing, Green IT and ducks (!).