The Internet of Things is bringing Electricity 2.0 that much closer

One of the reasons I started working with GreenMonk back in 2008 was that James heard my Electricity 2.0 vision, and totally bought into it.

The idea, if you’re not familiar with it, was that as smart grids are deployed, homes will become more connected, devices more intelligent, and home area networks would emerge. This would allow the smart devices in the home (think water heaters, clothes dryers, dish washers, fridges, electric car chargers, etc.) to listen to realtime electricity prices, understand them, and adjust their behaviour accordingly. Why would they want to do this? To match electricity demand to its supply, thereby minimising the cost to their owner, while facilitating the safe incorporation of more variable suppliers onto the grid (think renewables like solar and wind).

That was 2008/2009. Fast forward to the end of 2013 and we see that smart meters are being deployed in anger, devices are becoming more intelligent and home area networks are becoming a reality. The Internet of Things, is now a thing (witness the success of devices like Nest’s Thermostat and Protect, the Philips Hue, and Belkin’s WeMo devices). Also, companies like Gridpoint, Comverge and EnerNoc are making demand response (the automatic reduction of electricity use) more widespread.

We’re still nowhere near having realised the vision of utility companies broadcasting pricing in realtime, home appliances listening in and adjusting behaviour accordingly, but we are quite a bit further down that road.

One company who have a large part to play in filling in some of the gaps is GE. GE supplies much of the software and hardware used by utilities in their generation, transmission and distribution of electricity. This will need to be updated to allow the realtime transmission of electricity prices. But also, GE is a major manufacturer of white goods – the dish washers, fridges, clothes dryers, etc. which will need to be smart enough to listen out for pricing signals from utilities. These machines will need to be simple to operate but smart enough to adjust their operation without too much user intervention – like the Nest Thermostat. And sure enough, to that end, GE have created their Connected Appliances division, so they too are thinking along these lines.

More indications that we are headed the right direction are signalled by energy management company Schneider Electric‘s recently announced licensing agreement with ioBridge, and Internet of Things connectivity company.

Other big players such as Intel, IBM and Cisco have announced big plans in the Internet of Things space.

The example in the video above of me connecting my Christmas tree lights was a trivial one, obviously. But it was deliberately so. Back in 2008 when I was first mooting the Electricity 2.0 vision, connecting Christmas tree lights to the Internet and control them from a phone wouldn’t have been possible. Now it is a thing of nothing. With all the above companies working on the Internet of Things in earnest, we are rapidly approaching Electricity 2.0 finally.

Full disclosure – Belkin sent me a WeMo Switch + Motion to try out.

Comverge’s automated demand response is a win for utilities and their customers


Electric utility companies have to supply electricity to a user base whose demand is variable but reasonably predictable. On particularly hot or cold days, demand will increase as people turn on air conditioning or central heating units. This causes a peak in demand which may only occur for a few hours per year but still has to be met by these utilities.

How do utilities deal with these peaks in demand? There are two ways generally. The first is to build peaking plants. These are generation facilities built specifically to handle peaks in power demand. This is the traditional way of handling surges in electricity consumption but it is expensive to build a power plant, especially one that will only potentially be used a couple of days a year.

The other way is to try to manage the demand for electricity so it doesn’t reach as high a peak – known as peak shaving, or more typically, demand response.

One company which supplies demand response solutions to utilities is Comverge. I spoke to Comverge’s VP of Marketing, Jason Cigarran recently, about their newest demand response product, SmartPrice.

Comverge have been working on demand response solutions with utilities for a number of years now and they have just published case studies with two of their customers Tampa Electric [PDF] and Gulf Power [PDF].

What is interesting about these case studies is that the utilities customers report increased satisfaction with their utilities, as well as lower power bills. And the utilities get more predictable demand response, as well as happier customers. Classic win-win.

How does it work so well? Well the Comverge demand response offering is an automated system. Utility customers access it through a web portal and set how their devices should respond to demand response events. Typically they might set their pool pump to turn off, or their aircon to increase its temperature a degree or two.

The utility companies in turn see how much demand their customers have signed up to shed and because it is an automated load shedding, they know how much demand will reduce. This is unlike more manual demand response systems where the utilities are hoping their customers will turn down their appliances.

Demand response is a solution I have mentioned many times on this blog, and it was always my contention that an automated system, where devices listen to pricing signals from utilities, and respond accordingly, was the only way demand response would work well. It is great to see Comverge making that a reality.

Image credit Adam Rubock