post

Bring On The Renewables Bubble

Power Lines
Photo Credit chefranden

I was talking to Tom last night, and it struck me that a bubble won’t be all bad. There are a couple of reasons why. First off, unlike the last time a green bubble popped when oil prices collapsed in the 1980s, this time around we have China and India to sustain demand, and oil prices.

So why would a bubble be good? For one, we need the inward investment to create an infrastructure capable of serious lobbying, to be able to create favourable Green Tape (the rules, regulations and tax regimes surrounding renewable investments). At the moment energy lobbying is clearly in the hands of the oil and gas companies. This balance needs some redress, and massive capital injections are going to help.

Finally lets not also forget that bubbles can and do change the world. The first internet “bubble” popped, but you’re not about to tell me the transformation is over, and or has even started, yet…Innovation is discontinuous, and that’s why I am not afraid of some bubble tendencies. We just need to make sure some of the gum sticks when it bursts…

 

picture courtesy of chefranden on Flickr under creative commons Attribution 2.0 license.

 

post

IPv6: Towards a Greener Internet

As you probably know by now, we’re very interested in the idea of what might constitute a green API or protocol, so I was very interested when I received a link via twitter from @Straxus (Ryan Slobojan).

The Aon Scéal? (That’s Any News in Gaelic) blog by Alastrain McKinstry points to this piece by Yves Poppe which argues that IPv6 could save 300 Megawatts.

Easy to forget that most mobile devices used by Time Square revelers were behind IPv4 NAT’s and that always on applications such as Instant Messaging, Push e-mail, VoIP or location based services tend to be electricity guzzlers. It so happens that applications that we want always to be reachable have to keep sending periodic keepalive messages to keep the NAT state active. Why is that so? The NAT has an inactivity timer whereby, if no data is sent from your mobile for a certain time interval, the public port will be assigned to another device.

You cannot blame the NAT for this inconvenience, after all, its role in live is to redistribute the same public addresses over and over; if it detects you stopped using the connection for a little while, too bad, you lose the routable address and it goes to someone else. And when a next burst of data communication comes, guess what? It doesn’t find you anymore. Just think of a situation we would loose our cell phone number every time it is not in use and get a new one reassigned each time.

Nokia carried out the original study. Good work Nokia researcher guys! Another way of looking at the saved energy, which I think we’d all vote for, is potentially longer battery life of our mobile access devices. I am sure the folks at Nortel, who are so enthusiastically driving the green agenda for competitive advantage, would be interested in this research, and quite honestly its one of the first arguments I have heard that makes me think ah yes IPv6 lets pull the trigger. There are some good skeptical arguments in the comments here, but on balance I can definitely see the value of the initial research. Its surely worth further study.

While writing this article I also came across the rather excellent Green IT/Broadband blog. The author clearly believes in our Bit Miles concept, even if he doesn’t call it that.

Governments around the world are wrestling with the challenge of how to reduce carbon dioxide emissions. The current preferred approaches are to impose “carbon” taxes and implement various forms of cap and trade or carbon offset systems. However another approach to help reduce carbon emission is to “reward” those who reduce their carbon footprint rather than imposing draconian taxes or dubious cap and trade systems. It is estimated that consumers control or influence over 60% of all CO2 emissions. As such, one possible reward system of trading “bits and bandwidth for carbon” is to provide homeowners with free fiber to the home or free wireless products and other electronic services such as ebooks and eMovies if they agree to pay a premium on their energy consumption which will encourage them to reduce emissions by turning down the thermostat or using public transportation. Not only does the consumer benefit, but this business model also provides new revenue opportunities for network operators, optical equipment manufacturers, and eCommerce application providers.

European IPv6 Day, hosted by the EU is on the 30th May. Come to think about it the guy I should talk to about green IP is Vint Cerf of Google.

post

Energy Demand Management on TV!

Well, TechWebTV! I was over in Las Vegas this week attending EnergyCamp and InterOp.

I spoke about Energy Demand Management (EDM) at EnergyCamp and was pleasantly surprised at the level of interest in this topic. In fact there was so much interest that TechWebTV asked if I would go on camera to discuss EDM with Fritz Nelson!

It is a very brief discussion of quite a complex concept. We never really got into discussing the industrial implications of demand stimulation, for example. What will you do when energy prices fluctuate based on supply and demand? When electricity is extremely cheap or even negatively priced would it make sense to create hydrogen, only to burn it for power later when electricity prices go back up?

Or how about governments and/or utilities? Shouldn’t they be massively subsidizing plug-in hybrids so they can act as distributed storage (a nationwide battery) sucking in power when there is an excess and selling it back to the grid when supply starts falling off?

Discuss.

post

Energy Demand Management II – the sequel!

SANY0030
Creative Commons License photo credit: owlhere

The post I wrote about energy demand management (EDM) last week certainly stimulated some discussion and got people thinking – always good.

It appears it was a timely post too as I came across two announcements which seem to indicate that the big utilities are looking very seriously at smart grids and EDM.

The first news came out of SAP’s recently formed AMI Lighthouse Council when they announced the integration of Advanced Metering Infrastructure (AMI) with Enterprise technology.

The AMI lighthouse consists of SAP, CenterPoint Energy, CLP Power Hong Kong Limited, Consumers Energy, Energy East, Florida Power & Light, Oklahoma Gas & Electric and Public Service Electric & Gas as well as several strategic vendors like eMeter, Itron and OSIsoft.

AMI short for Advanced Metering Infrastructure refers to systems that measure, collect and analyse energy usage, from smart electricity meters on request or on a pre-defined schedule.

From Wikipedia

This infrastructure includes hardware, software, communications, customer associated systems and meter data management software.
The network between the measurement devices and business systems allows collection and distribution of information to customers, suppliers, utility companies and service providers. This enables these businesses to either participate in, or provide, demand response solutions, products and services.

The idea is that the AMI Lighthouse Council are working towards the integration of SAP® solutions with AMI solutions for business processes, including customer relationship and billing and enterprise asset management. All vital to making EDM a reality.

The second announcement which caught my eye is that IBM is working with Country Energy (a utility co. which owns and operates Australia’s largest energy supply network) to develop a smart grid in Australia. From the announcement:

Country Energy is pursuing the Intelligent Network concept to improve reliability, support the growth of renewables like solar and wind, and make energy efficiency simpler for customers.

When you see tech companies like SAP, and IBM betting heavily on the smart grid concept and utilities like Country Energy, CenterPoint Energy and CLP Power Hong Kong Limited coming on board to make it happen you know that smart grids are coming.

This next generation of smart grids will be able to absorb far more energy from unpredictable (destabilising) renewable energy sources without compromising grid stability which is in all our best interests.